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Abstract
Using the WIEN2k band-structure program in the generalized gradient
approximation (GGA) and a procedure based on minimization of the Gibbs free
energy at 0 K, we calculate the lattice parameters of face-centred-cubic (fcc)
and of hexagonal-close-packed (hcp) aluminium in the pressure range from 1.8
to 3.3 Mbar. The results are compared to the experimental data published by
Akahama et al. The agreement between theory and experiment is better than
1% for the lattice parameters and the axial ratio, and better than 2% for the
equation of state. The rigid-lattice transition pressure from intersection of Gibbs
free-energy curves is 1.92 Mbar.

1. Introduction

The characterization of aluminium as one of the simplest metals with a close-packed face-
centred-cubic (fcc) structure and no 3d electrons has made it an attractive system for several
theoretical and experimental studies starting about 30 years ago. The theoretical interest was
stimulated by the absence of d electrons at ambient pressure and by the consequences of
lowering the energy and partial filling of the 3d band with increasing hydrostatic pressure.
The calculations aimed at the determination of the equation of state (EOS) and relative phase
stability as a function of pressure. A common feature of the studies reported in the last 20 years
is a sequence of structure changes with increasing pressure from fcc to hcp and then to bcc
(body-centred cubic), a sequence similar to that observed in the transition-series elements with
increasing atomic number.

Early theoretical work [1] and a shock-compression experiment [2] had failed to find a
pressure-induced transition up to 3 Mbar (300 GPa) and 10 Mbar, respectively, but a 1982 study
by McMahan and Moriarty [3, 4] concentrating on energy (as opposed to enthalpy or Gibbs free
energy) differences between the fcc, hcp and bcc structures predicted the sequence mentioned
above and gave values for the transition pressures involved. A problem, however, was that
the two methods used for the calculations predicted notably different transition pressures: the
generalized pseudopotential technique (GPT) predicted 3.6 Mbar for the fcc–hcp transition,
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while the all-electron linear muffin-tin-orbital (LMTO) method within the so-called atomic-
sphere approximation (ASA) predicted 1.2 Mbar. A 1983 study by Lam and Cohen [5] by the
ab initio self-consistent pseudopotential (AP) technique found the same sequence of structures,
but predicted the rigid-lattice fcc–hcp transition to occur ‘at about 2 Mbar’. These authors
did calculate the enthalpy H = E + pV (E = energy per atom, V = volume per atom,
p = pressure) and used Murnaghan’s EOS to fit the calculated energies and then obtain the
pressure from the derivative −dE/dV , but found the volume changes at the transition to be
small, and hence concluded that the stable phase could be determined by comparing total
energies without the pV term, as was done in [3] and [4]. The contribution of the vibrational
energy was considered ‘probably not important’ in determining phase stability and it was
therefore not included in the total-energy calculations.

The discrepancies among the predictions of the fcc → hcp transition pressure (1.2, 3.6
and 2.0 Mbar) were left unchallenged until an experiment by Ruoff and co-workers [6], using
the diamond-anvil-cell (DAC) technique, measured the EOS and the crystal structure of Al
up to 2.19 Mbar (V/V0 = 0.50, V0 is the volume at p = 0) and found no evidence for a
transition. This result prompted Boettger and Trickey [7] to make a new calculation using a
linear combination of Gaussian-type orbitals-fitting function (LCGTO-FF) combined with a
rough estimate for the impact of zero-point motion on the transition. These authors used the
crossing of enthalpy curves to determine the fcc → hcp transition pressure, albeit treating the
hcp phase at ideal c/a only. The transition was thus predicted to occur at 2.05 ± 0.2 Mbar
(V/V0 = 0.51), neglecting both zero-point and thermal-phonon contributions. Estimates of
these contributions moved the transition pressure to upper bounds of 2.82 Mbar at 0 K and
2.90 Mbar at room temperature. These results, the authors conclude, suggest that the DAC
experiment of Ruoff and co-workers [6] came close to observing the fcc → hcp transition.

All the above theoretical studies adopted the local-density approximation (LDA) to
density-functional theory. A more recent work, by Sin’ko and Smirnov [8], uses the
full-potential linear muffin-tin orbital (FPLMTO) technique with the generalized gradient
approximation (GGA) together with the Debye treatment of the vibrating lattice to calculate
the EOS, the elastic constants and their dependence on volume, and the phase stability of Al.
From the crossing of Gibbs free-energy curves in their figure 1 we read about 1.7 Mbar for the
rigid-lattice fcc → hcp transition pressure, and about 2.2 Mbar after inclusion of zero-point
vibrations.

The definitive statement about the transition was made recently by Akahama et al [9] with a
powder x-ray diffraction and DAC experiment at pressures up to 3.33 Mbar. In this experiment,
as in the one by Ruoff and co-workers, no pressure-transmitting medium was used, which may
at the outset suggest some doubts about the hydrostaticity of the applied pressure. However,
the authors note that the very low errors in the measured average pressure, together with the
closeness of the results obtained with different anvil culet sizes, indicate that the Al sample
(a foil) acted as a good pressure-transmitting medium. The fcc → hcp transition was found
to occur at 2.17 ± 0.1 Mbar (V/V0 = 0.509). Thus this result is in general agreement with
theoretical predictions, and hence provides experimental evidence for the important role played
by d electrons in the transition owing to the gradual filling of the initially unoccupied 3d band
as the crystal is compressed. An additional valuable product of the Akahama et al experiment
is the publication of the pressure dependence of the lattice constants of both fcc and hcp Al in
the range from 1.8 to 3.33 Mbar, which inspired the present theoretical work.

None of the published theoretical studies on Al reported directly on the dependence of
the lattice constants upon pressure, with the possible exception of [1] for fcc Al in the lower-
pressure region up to about 1 Mbar. All the theoretical studies used the LDA except [8] and they
all used the procedure of minimizing the energy E with respect to structural deformations under
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the constraint of constant volume V , a procedure which requires knowledge of the function
p(V ) to fix the value of the pressure p. By contrast, in the present work we follow our well-
tested procedure [10] of determining equilibrium structure at a pressure p by minimizing the
Gibbs free energy per atom G = E + pV − T S (at 0 K, where G is equivalent to the enthalpy;
T = temperature, S = entropy) with respect to structure. In the present cases of fcc Al, which
we treat as body-centred tetragonal (bct) with structural parameters abct and cbct, and hcp Al,
with structural parameters ahcp and chcp, G is minimized with respect to both the a and the
c parameters (here we drop the subscripts for brevity) at a given p. This procedure directly
yields the pressure dependence of a, c, E and G in both phases. The treatment of fcc Al in bct
symmetry permits use of the epitaxial Bain path for the tetragonal structure at a given pressure.
We determine the equilibrium lattice parameters at the minimum of G on the epitaxial Bain
path at that pressure. The usual procedure of evaluating E at constant V does not give the
pressure p directly.

Some details of the calculations are given in section 2; the results are presented in section 3
and discussed in section 4.

2. Computation details

The calculations were done with the WIEN2k computer program developed by Blaha et al [11].
This program uses the FPLAPW (full-potential linearized augmented plane-wave) method for
computation of the electronic structure of solids from the Kohn–Sham equations of density
functional theory [12, 13] in the generalized gradient approximation (GGA). The procedure for
finding the minima of the Gibbs free energy G (at T = 0 K) as a function of the tetragonal or
hexagonal lattice parameters a and c has been described in detail elsewhere [14] and will be
only briefly summarized here.

For any value of the pressure p �= 0 one chooses a value of a = a1 and varies the
value of c until one finds the values c = c1 and E = E1 at which the slope of the energy
E is (∂ E/∂c)a = −p a2

1 sin γ /2, where γ is the angle between the a and b vectors (90◦ for
bct structures, 120◦ or 60◦ for hcp structures). This condition on the slope of E makes the
stress σ3 in the c direction equal to −p [10], which is the epitaxial boundary condition. Then
G1 = E1 + pV1 is the value of the free energy at 0 K on the so-called epitaxial Bain path
(EBP) at a1 and at pressure p (V1 is calculated from a1 and c1). The procedure is repeated for a
sequence of choices of a, providing values of G until a minimum of G is reached; this minimum
gives the equilibrium structure and G at the chosen pressure p. Thus by choosing different
values of p one determines an equilibrium path along which G(p), a(p), c(p) and V (p) are
determined directly, i.e., with no need of constant-volume calculations to find equilibrium and
the equilibrium pressure from −(dE/dV ).

The parameters used in the WIEN program for fcc and hcp Al were: muffin-tin radius
RMT = 1.9 bohr; plane-wave cutoff RKmax = 10.0; largest vector in the charge-density
Fourier expansion GMAX = 16 bohr−1; k-point sampling in the Brillouin zone of 16 000
points (about 1000 in the irreducible wedge IBZ) mostly for fcc Al, and 8000 (about 500 in the
IBZ) mostly for hcp Al; criterion for energy convergence 1 × 10−6 Ryd.

3. Results

The calculations determined the pressure dependence of the lattice constants and the Gibbs free
energy for both fcc and hcp Al. The crossing point of the two functions Ghcp(p) and Gfcc(p)

defines the rigid-lattice transition pressure between the fcc and the hcp structures. Figure 1
depicts the difference between the two functions and shows that the crossing occurs at about
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Figure 1. �G is the difference between the Gibbs free energies Ghcp (solid) and G fcc (dashed),
shown here as a function of pressure p. The crossing occurs at approximately 1.92 Mbar and
represents the rigid-lattice transition pressure. �E is the difference Ehcp − Efcc, which does not
vanish at any pressure.
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Figure 2. Lattice constants of fcc and hcp Al versus pressure. For afcc the plusses are experimental;
the open circles, theoretical. For ahcp and chcp the crosses are experimental; the open triangles,
theoretical.

1.92 Mbar. This value is 0.25 Mbar lower than the experimental value of 2.17 Mbar, but of
course it does not contain the contributions of zero-point and thermal phonons. Although we
do not calculate this contribution here, we expect that it will move the crossing-point pressure
toward larger pressures, since the zero-point energies will raise both G curves, but the Ghcp

will be raised more than the Gfcc owing to the contributions of optical modes in the hcp lattice.
Hence the crossing will occur at a higher pressure than the rigid-lattice value.

Figure 2 show the pressure dependence of the lattice parameters, both experimental
(plusses for fcc aexp

fcc ; crosses for hcp aexp
hcp and cexp

hcp) and theoretical (open circles for fcc atheo
fcc ;

open triangles for hcp atheo
hcp and ctheo

hcp ). The agreement between theory and experiment is very
good: about 0.2 to 0.4% for fcc and 0.4 to 0.8% for hcp.
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Figure 3. Axial ratio c/a for hcp Al versus pressure. Crosses: experimental data. Open triangles:
theoretical results.
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Figure 4. Volume per atom of fcc and hcp Al versus pressure. Plusses: fcc experimental. Crosses:
hcp experimental. Open circles: fcc theoretical. Open triangles: hcp theoretical.

Figure 3 depicts the pressure dependence of the axial ratio c/a for hcp Al (crosses
experimental; open triangles theoretical). The agreement is also good here, varying from 0.1 to
0.4% depending on the pressure.

Finally, figure 4 shows the equation of state (again, plusses and crosses, experimental, fcc
and hcp, respectively; open circles and open triangles, theoretical, fcc and hcp, respectively).
Here the agreement between theory and experiment is less good: from a minimum of 0.4% at
low pressures to a maximum of 2.1% above 3 Mbar.

4. Discussion

Agreement at the 1% level of the first-principles theoretical lattice parameters with
experimental data over a wide range of pressure has been obtained here for Al in two phases,
and for Ba in three phases [15]. As noted in [15], this agreement supports the conclusion
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that 1% accuracy in structure determination under pressure has been attained in the data, in
the WIEN band-structure program, and in the procedure based on minimizing the Gibbs free
energy at constant pressure.

We should not expect closer agreement between theory and experiment than 1% for two
reasons: (1) the effect of lattice motion, particularly zero-point motion, which can expand the
measured lattice in the 1% range, and (2) the inherent inaccuracy of the band calculations,
which appears to be at the 1% level. Some information on these effects is available for fcc
Al: Quong and Liu [16] have shown that the lattice constant a of fcc Al expands 0.1% due to
zero-point motion at p = 0 and another 0.4% at 300 K (in agreement with experiment). The
zero-point effect will probably be larger for hcp Al owing to optical modes. A study of the
accuracy of band calculations on fcc Al by Qiu et al [17] found values of lattice parameter a at
0 K and p = 0 calculated with inclusion of zero-point motion from Debye theory. Comparison
of the values of a with experiment showed that the GGA overestimates a by about 0.6% and
the LDA underestimates a by about 1%.

The rigid-lattice transition pressure between fcc and hcp Al should also be well established
by our calculation, but probably not as well as the lattice parameters. The relative G values of
two phases compare band-structure energy calculations in two different symmetries, so the
convergence error in the number of k-points is different, whereas the calculation of lattice
parameters in one phase compares energies for structures with the same symmetry and same
convergence error in number of k-points. Our value of 1.92 Mbar is in reasonable agreement
with the 2.05 Mbar found in [7], the 1.7 Mbar found in [8] and the 2 Mbar in [5].

The experimental value of the transition pressure pt is given as 2.17 Mbar in [9], which
includes the effects of lattice vibrations. Such effects have not been evaluated accurately
in the theory, although in [8] Debye theory finds that pt increases by 0.5 Mbar from zero-
point vibrations. However, [8] estimates the effects of zero-point vibrations by using Debye
theory, which substantially overestimates the zero-point energy by failing to take account of
the lowering of vibration frequencies by dispersion. We note that the value of 2.17 Mbar is the
pressure of the first appearance of the hcp phase for increasing pressure. The fcc phase is then
shown to disappear at 2.45 Mbar in figure 3 of [9], although the text states that the fcc structure
was detected up to 2.65 Mbar. A fluctuation model of the transition would probably find a value
of the thermodynamic transition pressure between 2.17 Mbar and the higher values at which
the fcc phase disappears.

Also plotted in figure 1 is �E = Ehcp − Efcc as a function of pressure, which shows
that �E does not vanish at any pressure. Thus comparison of energies E at the same pressure
will not give relative instabilities of phases. In [3–5] phase stabilities have been found by
comparison of energies at the same volume; hence the phases are at different pressures. This
comparison is physically incorrect, because phase transitions take place at the same pressure.
However, the sequence of phase stabilities from fcc to hcp with increasing pressure is correct.
We show why the sequence is correct, but the transition occurs at a pressure lower than the
thermodynamic pressure pt at which �G would vanish, where

�G = Ghcp − Gfcc = �E + p�V = Ehcp(p) − Efcc(p) + p[Vhcp(p) − Vfcc(p)], (1)

and E , G and V are considered functions of p for each phase.
We illustrate the comparison of energies at the same volume by noting that, at p =

2.3 Mbar, Vfcc = 55.86 bohr3/atom and Vhcp = 55.23 bohr3/atom, and �E(2.3 Mbar) =
4.7 mRyd (see figure 1); hence the fcc phase is more stable. The comparison of the energies of
the two phases at the same volume, say, at Vhcp(2.3 Mbar) = 55.23 bohr3, will increase Efcc

by the work of compression from Vfcc to Vhcp, which requires pressures greater than 2.3 Mbar,
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Table 1. Calculated pressure dependence of the lattice constants of fcc and hcp Al. Units of
pressure are Mbar, units of lattice constants are bohr.

Pressure afcc ahcp chcp c/a

1.84 6.193 4.376 7.140 1.632
2.00 6.145 4.345 7.069 1.627
2.30 6.068 4.284 6.958 1.624
2.50 6.014 4.248 6.900 1.624
2.76 4.207 6.826 1.623
3.00 4.172 6.766 1.622
3.30 4.131 6.697 1.621

i.e., to E ′
fcc, given by

E ′
fcc = Efcc(2.3 Mbar) +

∫ Vfcc

Vhcp

p dV . (2)

Then at Vhcp the energy difference is

�E ′ = Ehcp − E ′
fcc = �E −

∫ Vfcc

Vhcp

p dV < 0 (3)

and now the hcp phase is more stable. However, the work term∫ Vfcc

Vhcp

p dV = p(Vfcc − Vhcp) = −p�V > 0, (4)

which is subtracted from �E to give �E ′, is larger than p(Vfcc −Vhcp) at p = 2.3 Mbar, which
enters �G in (1) at p = 2.3 Mbar, because p > 2.3 Mbar. Hence the �E ′ at V = Vhcp makes
the hcp phase more stable with respect to fcc than �G at 2.3 Mbar would make it, and the
calculated transition pressure would be too low. However, contrary to the statements in [3–5]
that the p�V term can be ignored, the term is critical in obtaining the relative stability of
phases at the same pressure, as should be done.

The basic experimental data in [9] are values of a(p) and c(p) for fcc and hcp Al. It is
regrettable that previous papers on Al under pressure such as [7, 8] did not plot or tabulate the
values of a(p) and c(p), so that we could check their accuracy against the new data. In [7]
the constant close-packed value of c/a was assumed and it would be of interest to see how that
assumption affects a and c. Figure 3 here shows that c/a decreases by 0.7% between 1.8 and
3.2 Mbar. In [8] it is stated that c/a was varied at each V to minimize E , but no values of c/a
are given. Table 1 provides our calculated a(p) and c(p) values of fcc and hcp Al for future
reference.
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